Querying Collections for Data Objects

The purpose of the Query API is to retrieve Data Objects from a Collection using a filter. This is similar to querying a database table and using a SQL WHERE clause. You can also use aggregation to get a count of Data Objects matching a filter.

Filter expression language

In addition to KNN/ANN search functionality, Vector Search 2.0 provides versatile query capabilities using a custom query language. The query language is explained in the following table.

Filter Description Supported Types Example
$eq Matches Data Objects with field values that are equal to a specified value. Number, string, boolean {"genre": {"$eq": "documentary"}}
$ne Matches Data Objects with field values that are not equal to a specified value. Number, string, boolean {"genre": {"$ne": "drama"}}
$gt Matches Data Objects with field values that are greater than a specified value. Number {"year": {"$gt": 2019}}
$gte Matches Data Objects with field values that are greater than or equal to a specified value. Number {"year": {"$gte": 2020}}
$lt Matches Data Objects with field values that are less than a specified value. Number {"year": {"$lt": 2020}}
$lte Matches Data Objects with field values that are less than or equal to a specified value. Number {"year": {"$lte": 2020}}
$in Matches Data Objects with field values that are in a specified array. String {"genre": {"$in": ["comedy", "documentary"]}}
$nin Matches Data Objects with field values that are not in a specified array. String {"genre": {"$nin": ["comedy", "documentary"]}}
$and Joins query clauses with a logical AND. - {"$and": [{"genre": {"$eq": "drama"}}, {"year": {"$gte": 2020}}]}
$or Joins query clauses with a logical OR. - {"$or": [{"genre": {"$eq": "drama"}}, {"year": {"$gte": 2020}}]}
$all Selects the documents where the array value of a field contains all specified values. - {"colors": {"$all": ["red", "blue"]}}

Querying Collections

The following example demonstrates how to use a filter to query for Data Objects in a Collection with the ID COLLECTION_ID.

REST

Before using any of the request data, make the following replacements:

  • COLLECTION_ID: The ID of the collection.
  • LOCATION: The region where you are using Vertex AI.
  • PROJECT_ID: Your Google Cloud project ID.

HTTP method and URL:

POST https://vectorsearch.googleapis.com/v1beta/projects/PROJECT_ID/locations/LOCATION/collections/COLLECTION_ID/dataObjects:query

Request JSON body:

{
  "page_size": 10,
  "page_token": "",
  "filter": {
    "$or": [
      {
        "director": {
          "$eq": "Akira Kurosawa"
        }
      },
      {
        "$and": [
          {
            "director": {
              "$eq": "David Fincher"
            }
          },
          {
            "genre": {
              "$ne": "Thriller"
            }
          }
        ]
      }
    ]
  },
  "output_fields": {
    "data_fields": "*",
    "vector_fields": "*",
    "metadata_fields": "*"
  }
}

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

{
  "dataObjects": [
    {
      "name": "projects/PROJECT_ID/locations/LOCATION/collections/COLLECTION_ID/dataObjects/1",
      "createTime": "2026-02-04T14:35:29Z",
      "updateTime": "2026-02-04T14:37:29Z",
      "data": {
        "title": "Seven Samurai",
        "director": "Akira Kurosawa",
        "genre": "Action",
        "year": 1954
      },
      "vectors": {
        "genre_embedding": {
          "dense": {
            "values": [
              0.3863801,
              0.73934346,
              0.16189057,
              0.5271367
            ]
          }
        },
        "sparse_embedding": {
          "sparse": {
            "values": [
              1,
              6,
              3,
              2,
              8,
              5,
              2
            ],
            "indices": [
              4065,
              13326,
              17377,
              25918,
              28105,
              32683,
              42998
            ]
          }
        },
        "plot_embedding": {
          "dense": {
            "values": [
              1,
              1,
              1
            ]
          }
        },
        "soundtrack_embedding": {
          "dense": {
            "values": [
              0.5920452,
              0.08301644,
              0.12647335,
              0.619643,
              0.49258286
            ]
          }
        }
      }
    },
    {
      "name": "projects/PROJECT_ID/locations/LOCATION/collections/COLLECTION_ID/dataObjects/2",
      "createTime": "2026-02-04T15:35:29Z",
      "updateTime": "2026-02-04T15:37:29Z",
      "data": {
        "title": "The Social Network",
        "director": "David Fincher",
        "genre": "Drama",
        "year": 2010
      },
      "vectors": {
        "genre_embedding": {
          "dense": {
            "values": [
              0.1,
              0.2,
              0.3,
              0.4
            ]
          }
        },
        "sparse_embedding": {
          "sparse": {
            "values": [
              1
            ],
            "indices": [
              1000
            ]
          }
        },
        "plot_embedding": {
          "dense": {
            "values": [
              0.1,
              0.1,
              0.1
            ]
          }
        },
        "soundtrack_embedding": {
          "dense": {
            "values": [
              0.1,
              0.2,
              0.3,
              0.4,
              0.5
            ]
          }
        }
      }
    }
  ]
}

gcloud

Before using any of the command data below, make the following replacements:

  • COLLECTION_ID: The ID of the collection.
  • LOCATION: The region where you are using Vertex AI.
  • PROJECT_ID: Your Google Cloud project ID.

Execute the following command:

Linux, macOS, or Cloud Shell

gcloud beta vector-search collections data-objects query \
  --json-filter='{"$or": [{"director": {"$eq": "Akira Kurosawa"}},{"$and": [{"director": {"$eq": "David Fincher"}},{"genre": {"$ne": "Thriller"}}]}]}' \
  --output-data-fields='*' \
  --output-vector-fields='*' \
  --output-metadata-fields='*' \
  --collection=COLLECTION_ID \
  --location=LOCATION \
  --project=PROJECT_ID

Windows (PowerShell)

gcloud beta vector-search collections data-objects query `
  --json-filter='{"$or": [{"director": {"$eq": "Akira Kurosawa"}},{"$and": [{"director": {"$eq": "David Fincher"}},{"genre": {"$ne": "Thriller"}}]}]}' `
  --output-data-fields='*' `
  --output-vector-fields='*' `
  --output-metadata-fields='*' `
  --collection=COLLECTION_ID `
  --location=LOCATION `
  --project=PROJECT_ID

Windows (cmd.exe)

gcloud beta vector-search collections data-objects query ^
  --json-filter='{"$or": [{"director": {"$eq": "Akira Kurosawa"}},{"$and": [{"director": {"$eq": "David Fincher"}},{"genre": {"$ne": "Thriller"}}]}]}' ^
  --output-data-fields='*' ^
  --output-vector-fields='*' ^
  --output-metadata-fields='*' ^
  --collection=COLLECTION_ID ^
  --location=LOCATION ^
  --project=PROJECT_ID

You should receive a response similar to the following:

---
createTime: '2026-02-04T14:35:29Z'
data:
  director: Akira Kurosawa
  genre: Action
  title: Seven Samurai
  year: 1954
name: projects/PROJECT_ID/locations/LOCATION/collections/COLLECTION_ID/dataObjects/1
updateTime: '2026-02-04T14:37:29Z'
vectors:
  genre_embedding:
    dense:
      values:
      - 0.38638
      - 0.739343
      - 0.161891
      - 0.527137
  plot_embedding:
    dense:
      values:
      - 1.0
      - 1.0
      - 1.0
  soundtrack_embedding:
    dense:
      values:
      - 0.592045
      - 0.0830164
      - 0.126473
      - 0.619643
      - 0.492583
  sparse_embedding:
    sparse:
      indices:
      - 4065
      - 13326
      - 17377
      - 25918
      - 28105
      - 32683
      - 42998
      values:
      - 1.0
      - 6.0
      - 3.0
      - 2.0
      - 8.0
      - 5.0
      - 2.0
---
createTime: '2026-02-04T15:35:29Z'
data:
  director: David Fincher
  genre: Drama
  title: The Social Network
  year: 2010
name: projects/PROJECT_ID/locations/LOCATION/collections/COLLECTION_ID/dataObjects/2
updateTime: '2026-02-04T15:37:29Z'
vectors:
  genre_embedding:
    dense:
      values:
      - 0.1
      - 0.2
      - 0.3
      - 0.4
  plot_embedding:
    dense:
      values:
      - 0.1
      - 0.1
      - 0.1
  soundtrack_embedding:
    dense:
      values:
      - 0.1
      - 0.2
      - 0.3
      - 0.4
      - 0.5
  sparse_embedding:
    sparse:
      indices:
      - 1000
      values:
      - 1.0

Python

from google.cloud import vectorsearch_v1beta

# Create the client
data_object_search_service_client = vectorsearch_v1beta.DataObjectSearchServiceClient()

# Initialize request
request = vectorsearch_v1beta.QueryDataObjectsRequest(
    parent="projects/PROJECT_ID/locations/LOCATION/collections/COLLECTION_ID",
    filter={
        "$or": [
            {"director": {"$eq": "Akira Kurosawa"}},
            {
                "$and": [
                    {"director": {"$eq": "David Fincher"}},
                    {"genre": {"$ne": "Thriller"}},
                ]
            },
        ]
    },
)

# Make the request
page_result = data_object_search_service_client.query_data_objects(request=request)

# Handle the response
for response in page_result:
    print(response)

To perform an aggregation, you use the aggregate endpoint and specify the type of aggregation in the request body.

The following example demonstrates how to count all Data Objects in a Collection with the ID COLLECTION_ID.

REST

Before using any of the request data, make the following replacements:

  • COLLECTION_ID: The ID of the collection.
  • LOCATION: The region where you are using Vertex AI.
  • PROJECT_ID: Your Google Cloud project ID.

HTTP method and URL:

POST https://vectorsearch.googleapis.com/v1beta/projects/PROJECT_ID/locations/LOCATION/collections/COLLECTION_ID/dataObjects:aggregate

Request JSON body:

{
  "aggregate": "count"
}

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

{
  "aggregateResults": [
    {
      "count": 1000
    }
  ]
}

gcloud

Before using any of the command data below, make the following replacements:

  • COLLECTION_ID: The ID of the collection.
  • LOCATION: The region where you are using Vertex AI.
  • PROJECT_ID: Your Google Cloud project ID.

Execute the following command:

Linux, macOS, or Cloud Shell

gcloud beta vector-search collections data-objects aggregate \
  --aggregation-method=count \
  --collection=COLLECTION_ID \
  --location=LOCATION \
  --project=PROJECT_ID

Windows (PowerShell)

gcloud beta vector-search collections data-objects aggregate `
  --aggregation-method=count `
  --collection=COLLECTION_ID `
  --location=LOCATION `
  --project=PROJECT_ID

Windows (cmd.exe)

gcloud beta vector-search collections data-objects aggregate ^
  --aggregation-method=count ^
  --collection=COLLECTION_ID ^
  --location=LOCATION ^
  --project=PROJECT_ID

You should receive a response similar to the following:

aggregateResults:
- count: 1000

Python

from google.cloud import vectorsearch_v1beta

# Create the client
data_object_search_service_client = vectorsearch_v1beta.DataObjectSearchServiceClient()

# Initialize request
request = vectorsearch_v1beta.AggregateDataObjectsRequest(
    parent="projects/PROJECT_ID/locations/LOCATION/collections/COLLECTION_ID",
    aggregate="COUNT",
)

# Make the request
response = data_object_search_service_client.aggregate_data_objects(request=request)

# Handle the response
print(response)

What's next?